《AIS 中国区域二进制信息技术规范》 (征求意见稿) 编制说明

《AIS 中国区域二进制信息技术规范》标准编制组 二〇一六年七月

一、 工作简况

1.1任务来源

受天津海事局的委托,针对我国 AIS 二进制信息应用规范化、标准化研究方向,以及实现 AIS 二进制信息显示汉字化、图形化,提升我国 AIS 信息应用水平发展,结合我国沿海各行业对 AIS 二进制信息的需求及航行安全管理的实际工作要求,制定本标准。根据交通运输标准化计划统筹安排,计划编号 JT2015-101。

1. 2协作单位

中华人民共和国天津海事局

北京尚乘亿邦通信技术有限公司

1. 3主要工作过程

为按时、优质、有效的进行项目的实施,为项目顺利完成提供保障,通过下列机制、手段进行项目工作。

- 1、建立完善有效的组织机构。设立项目领导小组和项目专家咨询组以及项目课题组。
- 2、统筹管理,全面协调,明确分工。在承担单位内部依据部门职责和工作内容,由通信导航研究室负责项目的总体运作管理,充分发挥内部监督的作用,结合部门工作实际,进行任务分解,按分解的部分进行工作分工实施。
 - 3、定期召开课题组会议。每月召开二次课题组会议,利用课题组

会议进行阶段性工作总结和下一阶段工作任务的布置,并及时形成会议纪要。在成员内部之间充分进行信息交流和沟通,并对疑难问题集中讨论,在此基础上,有针对性的开展下一阶段工作,对疑难问题征求专家意见。

4、进行严密的工作记录。对项目实施的所有工作进行及时细致的工作记录,为工作开展提供指导依据,同时保证项目实施后期工作报告的准确编写。

标准主要起草人及其所做的工作

项目主要参加人员名单						
序号	姓名	所学专业	现从事专	职称/职务	项目角色	
1	胡伟	通信工程	通信导航	研究员	指导	
2	侯安健	通信工程	通信导航	高级工程师	项目负责人	
3	姚高乐	通信工程	通信导航	高级工程师	项目负责人	
4	张三喜	数学	通信导航	高级工程师	项目联络人	
5	张鑫	计算机科学技术	通信导航	工程师	项目研究	
6	付春宇	计算机科学技术	通信导航	工程师	项目研究	

二、主要内容

2.1 标准编制原则及依据

本标准立足于 AIS 调研工作实践,考虑 AIS 二进制消息播发的历史连贯性和发展前瞻性,力求提高信息传输效率,改善 AIS 二进制信

息应用效果,扩展 AIS 应用范围,科学合理、易用,满足实际工作需要,便于实施和推广使用。

全面性: AIS 二进制信息应用拓展以服务船舶用户、管理单位, 应充分考虑到系统时隙冗余, 综合不同用户的需求特点以及不同管理部门的需求和业务特点, 对数据内容、格式和取值进行分析和定义。

兼容性: AIS 二进制信息应用是在现有国际标准 ITU-R M. 1371-5 基础上衍生的业务服务,因此其通信接口和协议、数据规范、显示标准都要符合国际、国家和行业标准,并且具备兼容性,能够在不同系统、平台中显示和利用,形成科学合理、相互兼容、资源共享的信息播发标准。

本标准体系修订的研究依据主要包括:

- ▶ GB17577. 2-1998 中华人民共和国航行警告标准格式
- ▶ IEC 61162-1:2010(E) 航海导航和无线电通讯设备及系统数字接口
- ▶ ITU-R M. 1371-5 在 VHF 水上移动频带内使用时分多址的自动识别系统的技术特性
- ▶ 航行安全小组委员会第五十五届会议议程项目 14 二进制信息报告草案
- ▶ 港监字[1993]128号 中华人民共和国发布海上航行警告和航行通告管理办法

2.2 标准编制的主要内容

2.2.1 标准总体思路

由于我国 DAC 为 412、413,同时 FI 为 0~63,因此我国可以定义的二进制信息类型为 2×64 类,资源量十分丰富。因此有必要做好前期规划。此次方案将我国的 AIS 二进制信息分为两类应用:一类为水文、气象、潮汐、助航指南等可以实现在 AIS 船台显示终端上通过电子海图进行图形化显示的应用,DAC 为 412;一类为通过特定编码实

现在 AIS 船台显示终端上显示海事局播发的报警、提示类的中文文字信息, DAC 为 413。

DAC 为 412 的图形化信息,主要需要调研了解用户所需的助航服 务以及 AIS 信息播发所涉及的政策、法律等因素。制定信息类别,比 如水文、气象、潮位等,对每一类信息中数据位进行标准定义来表示 不同的数据内容。比如气象信息(实例):

参数	比特数	说明
指定区域吗	10	412
功能识别码	6	1
经度	24	气象信息的区域
纬度	25	
时间	16	采用年-月-日-时-分,气象数据时间
平均风速	7	按照风速的表示情况输入
最大风力	7	
风向	9	
阵风风向	9	
温度	11	
气压	7	

DAC 为 413 的汉字信息,需要了解海事系统播发的文本模板,在终端集成不同类型的文本格式,对特定的数据进行定义实现在 AIS 船台显示中文的功能。

2.2.2 分析、研究 AIS 信息应用系统

从 AIS 播发机制出发,分析研究当前 AIS 信息系统的功能和组成。利用调研结果数据,通过分解图的形式对航标 AIS 信息系统进行梳理。

AIS 信息从应用类型和播发报文号上进行分类如图所示:

DAC	FI	应用类型	六号报文	八号报文
412	01	海洋气象预报	支持	支持
412	02	海洋环境预报	支持	支持

412	03	海洋气象预警	支持	支持
412	04	水文气象预报	支持	支持
412	05	助行标注动态	支持	支持
412	06	碍航物信息	支持	支持
412	07	施工作业	支持	支持
412	08	海上拖带	支持	支持
412	09	演习、打靶、海上军事活动	支持	支持
412	10	船舶遇险	支持	支持
412	11	划定区域(圆形、矩形)	支持	支持
412	12	划定区域(不规则)	支持	支持
412	13	气象采集	支持	不支持
412	14	航线推荐 (船舶请求)	支持	不支持
412	15	航线推荐	支持	不支持
412	16	航线气象 (船舶请求)	支持	不支持
412	17	航线气象	支持	不支持
412	18	扩展船舶静态数据和航行相关信息(报告请 求)	支持	不支持
412	19	船舶报告	支持	不支持
412	25	航标遥测遥控	支持	不支持
413	01	中英文播发	支持	支持

- 海洋气象预报,气象要素主要有:天气现象、风速、风向、气温、 气压、能见度。根据规则,每个报文最大可发布 14 个位置的气象 预报信息。
- 海洋环境预报,气象要素主要有:流速、流向、浪高、浪向、海温等。根据本规则,每个报文最大可发布 16 个位置的气象预报信息。
- 海洋气象预警,主要气象预警种类有:热带气旋、大风预警、大 浪预警、大雾预警、风暴潮、冰况预警、寒潮预警。
- 水文气象预报,主要有潮汐、水文信息,潮汐提供了高潮时间、 低潮时间。
- 助行标注动态, 主要有新增、撤出、飘失、故障、恢复工作、移位、灯质改变、DGPS 台站停止发射。
- 碍航物信息, 主要有漂流碍航物和非漂流碍航物, 碍航物信息中

给出了碍航物的类型、位置、以及影响航行的时间。

- 施工作业,主要有影响船舶航行的各类水上、水下施工作业信息, 主要包括作业类型、施工区域、施工时间。
- 海上拖带,从某一位置到另一位置拖带的编码规范,主要有被拖船舶 MMIS 号码,起始位置、终止位置、船舶总长、航速、拖带时间以及注意事项。
- 演习、打靶、海上军事活动,在由多点围成的水上区域开展军事活动,主要有活动主题、持续时间类型、活动区域、活动时间、注意事项。
- 船舶遇险,主要有遇险类型、遇险状态、遇险地点、遇险时间以及注意事项。
- 划定区域(圆形、矩形),圆形和矩形区域划定特殊区域。
- 划定区域(不规则),根据多个位置围成的不规则区域。
- 气象采集,主要用于各部门以及船舶自动气象观测站数据的采集。
- 航线推荐,主要用于船舶气象导航,船舶将自身基本信息及起始 位置经纬度信息发送至岸基系统,通过后台计算推荐一条杭行线 路。
- 航线气象,为船舶提供航线上各点的气象信息,船舶向岸基系统 发起信息请求,提供所需气象信息的位置经纬度,由后台计算出 相关气象信息按船舶提出的位置顺序发送气象信息。
- 扩展船舶静态数据和航行相关信息(报告请求),主要用岸基系统

要求船舶提供船舶静态数据及航行相关信息,岸基系统向船舶发出汇报请求,船舶按要求向岸基系统汇报相关信息。

- 航标遥测遥控,主要功能为遥测 AIS 航标状态数据(航标设备运行参数,供电系统参数,环境参数)。遥控 AIS 航标(灯器控制,供电系统控制,环境控制),其中船舶内容由厂家定制。
- 中英文播发,中文、英文信息播发。

2.2.3 中文编码规范

a) 机内码转换为收发代码的方法取一个字节 8 位的机内码记为 x1;

如果 x1 的第 8 位为 "0",则为标准 ASCII 码,按下列转换算 法转换为 7 位表示 ASCII 字符的收发代码 v1:

$$yA = \begin{cases} xA, & xA < 0.x40; \\ xA - 0.x40, & xA \ge 0.x40; \end{cases}$$

式中: y1 ——7 位有效;

0x ——表示其后是 16 进制数字,下同。

如果 x1 的第 8 位为 "1",则为汉字代码,取第二个字节 8 位机内码 x2,将 x1、x2 的第 8 位

清成"0", x1、x2即为机内码表示汉字的14位代码,第一字节x1记为A,低7位有效,第二字节x2记为B,低7位有效;转换成收发代码表示汉字的13位代码,第一字节记为a,低6位有效,第

二字节记为 b, 低 7 位有效:转换算法如下:

式中: * ---乘法;

/ ——除法;

x/y 取商——x 除以y,结果仅用整数商;

x % y ——x 除以 y, 结果仅用余数;

将 13 位汉字代码 a、b, 其字节 a 的第 7 位置"1", 并将 a、b 记为 y1、y2, 即构成 14 位表示汉字的收发代码。

b) 收发代码转换为机内码的方法

取一个 7 位的收发代码记为 y1;

如果 y1 的第 7 位为 "0",则表示 6 位 ASCII 码,按下列转换算 法转换为 8 位表示 ASCII 字符的机内码 x1:

$$x1 = \begin{cases} y1 + 0x40, & y1 < 0x20; \\ y1, & y1 \ge 0x20; \end{cases}$$

如果 y1 的第 7 位为"1",则为汉字代码,取第二个 7 位的收发代码 y2,将第 1 字节 y1 的第 7 位清"0",y1、y2 即为收发代码表示汉字的 13 位代码,第一字节 y1 记为 a,低 6 位有效,第二字节 y2 记为 b,低 7 位有效;转换成机内码表示汉字的 14 位代码第一字节记为 A,低 7 位有效,第二字节记为 B,低 7 位有效;转换算法如下:

$$A = \begin{cases} 0x30 + |a/4| \, \text{取商}, & b < 0x20; \\ a + 0x40, & b \ge 0x20; \end{cases}$$

$$B = \begin{cases} b + (a \& 3) * 0x20, & b < 0x20; \\ b, & b \ge 0x20; \end{cases}$$
(算式三)

式中: * ---乘法;

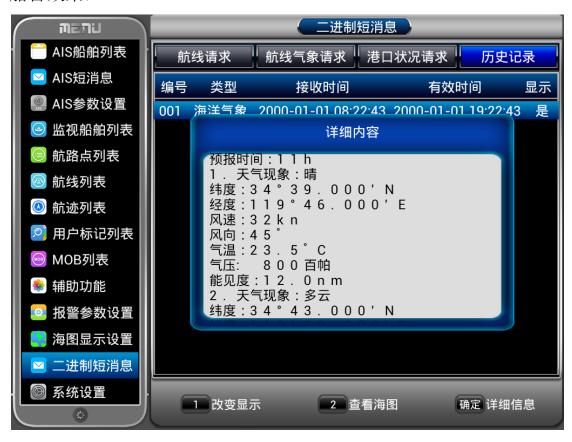
/ ——除法;

x / y 取商——x 除以 y, 结果仅用整数商;

x&y ——x 按位与 y。

将 14 位汉字代码 A、B, 其两个字节第 8 位置"1", 记为 x1、x2, 即构成 16 位表示汉字的机内码。

2.2.4 标准试验方法


搭建 AIS 试验环境,通过天津海事局 AIS 专网控制东突堤基站发送报文,在塘沽港口使用根据标准适配过的测试船台接收显示数据。

试验内容,使用6,8号报文按标准定义的应用报文逐一播发,船台成功接收并按照标准协议解析显示相关数据。

试验报文举例,海洋气象预报。

报文内容: !ECABM, 1, 1, 0, 413015130, 0, 06, Ih6h`rID2nPFsMC0, 0 船台效果:

三、成果效益分析

AIS 作为重要的通信工具,是船舶安全航行的基本保障。AIS 二进制应用是提高船舶工作必然手段,研究 AIS 二进制应用标准开展相关研究具有十分显著的经济和社会效益。

1、提高管理效率并提升服务水平的效益

AIS 二进制应用标准,有利于船舶导航系统的统筹发展,提升整体的管理效率和管理部门的服务水平。

2、提高运输效率并降低货运成本的效益

AIS 二进制应用标准,能够有效加强船舶与航海保障部门、航标与航海保障部门间的联系,保障船舶的安全性,提高船舶的航行、运输效率,从而提高船舶运输企业和港口的营运效益。

3、减少交通事故产生的效益

AIS 二进制应用标准可以有效辅助实施水上交通管理,通过掌握 航行气象信息,择优而行。降低在水域发生交通事故的风险,从而降 低因为交通事故而造成的损失。

四、国外标准情况对比

本标准在 ITU-R M.1371-5 下拓展制定,在国际发达国家已有 AIS 海洋气象、航标动态等应用产品,根据 ITU-R M.1371-5 规定,分配我国使用 DAC 为 412、413 区域码。在区域码内,根据我国海运需求,拟定了标准中 21 类二进制应用报文。在未来可针对我国海洋环境不断变化产生新的需求进行扩展应用。

五、重大分歧意见的处理经过和依据

无

六、其他应予说明的事项

无